e-ISSN: 2617-7668     print ISSN: 2522-9176
Bone change in intermediate β-thalassemia
##common.pageHeaderLogo.altText## EURASIAN JOURNAL OF CLINICAL SCIENCES

Abstract

Intermediate β-thalassemia is a moderate clinical condition between small thalassemia and large thalassemia. These patients do not need regular blood transfusions throughout their lives, although they may need blood transfusions under certain clinical conditions and usually over a period of time (surgery, pregnancy, infection). Intermediate thalassemia has a wide clinical spectrum, from a form with moderate anemia (hemoglobin level of 70-100 g / l) to a condition with more severe anemia, which manifests itself in the first 2-6 years of life. Since these patients usually do not require routine transfusions, as mentioned above, intermediate thalassemia is classified as transfusion-independent thalassemia [1-3]. These patients, as well as patients with large thalassemia, require careful attention of a clinician to improve the quality of life [4-7].

References

Weatherall DJ (2012) The definition and epidemiology of non-transfusion-dependent thalassemia. Blood Reviews 26(Suppl 1): S3- S6.

Musallam KM, Rivella S, Vichinsky E, Rachmilewitz EA (2013) Non-transfusion-dependent thalassemias. Haematologica 98(6): 833-844.

Vichinsky E (2016) Non-transfusion-dependent thalassemia and thalassemia intermedia: epidemiology, complications, and management. Current Medical Research Opinion 32(1): 191-204.

Taher AT, Musallam KM, Cappellini MD (2009) Thalassaemia Intermedia: an Update. Mediterr J Hematol Infect Dis 1(1): e2009004.

Taher AT, Musallam KM, Karimi M, El-Beshlawy A, Belhoul K, et al. (2010) Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the optimal care study. Blood 115(10): 1886-1892.

Haddad A, Tyan P, Radwan A, Mallat N, Taher A (2014) β-Thalassemia Intermedia: A Bird’s-Eye View. Turk J Hematol 31(1): 5-16.

Karimi M, Cohan N, De Sanctis V, Mallat NS, Taher A, et al. (2014) Guidelines for diagnosis and management of Beta-thalassemia intermedia. Pediatr Hematol Oncol 31(7): 583-596.

Perrotta S, Cappellini MD, Bertoldo F, Servedio V, Iolascon G, et al. (2000) Osteoporosis in β-thalassaemia major patients: analysis of the genetic background. Br J Haematol 111(2): 461-466.

Taher AT, Musallam KM, El-Beshlawy A, Karimi M, Daar S, et al. (2010) Age related complications in treatment-naive patients with thalassaemia intermedia. Br J Haematol 150(4): 486-489.

Haidar R, Musallam KM, Taher AT (2011) Bone disease and skeletal complications in patients with β thalassemia major. Bone 48(3): 425- 432.

Sien Y, Yusoff A, Shahar S, Rajikan R (2014) Bone Health Status among Thalassemia Children. International Journal of Public Health Research 4(1): 399-404.

Vogiatzi MG, Macklin EA, Fung EB, Vichinsky E, Olivieri N, et al. (2006) Prevalence of fractures among the Thalassemia syndromes in North America. Bone 38(4): 571-575.

Karimi M, Ghiam AF, Hashemi A, Alinejad S, Soweid M, et al. (2007) Bone mineral density in beta-thalassemia major and intermedia. Indian Pediatr 44(1): 29-32.

Borgna-Pignatti C (2007) Modern treatment of thalassemia intermedia. Br J Haematol 138(3): 291-304.

Dresner Pollack R, Rachmilewitz E, Blumenfeld A, Idelson M, Goldfarb AW (2000) Bone mineral metabolism in adults with β-thalassaemia major and intermedia. Br J Haematol 111(3): 902-907.

Morabito N, Gaudio A, Lasco A, Atteritano M, Pizzoleo MA, et al. (2004) Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle. J Bone Miner Res 19(5): 722-727.

Morabito N, Russo GT, Gaudio A, Lasco A, Catalano A, et al. (2007) The “lively” cytokines network in β-thalassemia major-related osteoporosis. Bone 40(6): 1588-1594.

Voskaridou E, Terpos E (2004) New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol 127(2): 127-139.

Voskaridou E, Christoulas D, Xirakia C, Varvagiannis K, Boutsikas G, et al. (2009) Serum Dickkopf-1 is increased and correlates with reduced bone mineral density in patients with thalassemia-induced osteoporosis. Reduction post-zoledronic acid administration. Haematologica 94(8): 725-728.

Voskaridou E, Christoulas D, Papatheodorou A, Cornelia Bratengeier, Eleni Plata, et al. (2010) High circulating levels of sclerostin correlate with bone mineral density in patients with thalassemia and osteoporosis: the role of the Wnt signaling in the pathogenesis of bone loss in thalassemia. Blood 116: 1010.

Wonke B, Jensen C, Hanslip JJ, Prescott E, Lalloz M, et al. (1998) Genetic and acquired predisposing factors and treatment of osteoporosis in thalassaemia major. J Pediatric Endocrinol Metabol 11(suppl 3): 795- 801.

Ferrara M, Matarese S, Francese M, Borrelli B, Coppola A, et al. (2002) Effect of VDR polymorphisms on growth and bone mineral density in homozygous β-thalassaemia. Br J Haematol 117(2): 436-440.

Hashemieh M, Azarkeivan A, Radfar M, Saneifard H, Hosseini-Zijoud SM, et al. (2014) Prevalence of osteoporosis among thalassemia patients from Zafar adult thalassemia clinic, Iran. Iranian Journal of Blood & Cancer 6(3): 143-148.

Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4(6): 368-381.

Mahachoklertwattana P, Chuansumrit A, Sirisriro R, Choubtum L, Sriphrapradang A, et al. (2003) Bone mineral density, biochemical and hormonal profiles in suboptimally treated children and adolescents with β-thalassaemia disease. Clin Endocrinol 58(3): 273-279.

Voskaridou E, Kyrtsonis MC, Terpos E, Skordili M, Theodoropoulos I, et al. (2001) Bone resorption is increased in young adults with thalassaemia major. Br J Haematol 112(1): 36-41.

Taher AT, Musallam KM, Karimi M, El-Beshlawy A, Belhoul K, et al. (2010c) Splenectomy and thrombosis: the case of thalassemia intermedia. J Thrombos Haemostas 8: 2152-2158.

Musallam KM, Cappellini MD, Wood JC, Motta I, Graziadei G, et al. (2011) Elevated liver iron concentration is a marker of increased morbidity in patients with β-thalassemia intermedia. Haematologica 96(11): 1605-1612.

Musallam KM, Cappellini MD, Daar S, Karimi M, El-Beshlawy A, et al. (2012) Serum ferritin levels and morbidity in beta-thalassemia intermedia: a 10-year Cohort study. Hematologica 99(11): e218-221.

Musallam KM, Cappellini MD, Taher AT (2013b) Iron overload in β-thalassemia intermedia: an emerging concern. Current Opinion in Hematology 20(3): 187-192.

Carmina E, di Fede G, Napoli N, Renda G, Vitale G, et al. (2004) Hypogonadism and hormone replacement therapy on bone mass of adult women with thalassemia major. Calcif Tissue Int 74(1): 68-71.

Ladis V, Raptou P, Rigatou E, Chouliaras G, Galanos A, et al. (2008) Study of bone density by pQCT analysis in healthy adults and patients with β-thalassemia major and intermedia. Pediatr Endocrinol Rev 6(1): 127-131.

Inati A, Noureldine MA, Mansour A, Abbas HA (2015) Endocrine and bone complications in β-thalassemia intermedia: current understanding and treatment. Biomed Res Int 2015: 813098.

Taher AT, Otrock ZK, Uthman I, Cappellini MD (2008) Thalassemia and hypercoagulability. Blood Rev 22(5): 283-292.

Giusti A, Pinto V, Forni GL, Pilotto A (2016) Management of beta-thalassemia-associated osteoporosis. Ann N Y Acad Sci 1368(1): 73-81.

Boutsen Y, Jamart J, Esselinckx W, Devogelaer JP (2001) Primary prevention of glucocorticoid-induced osteoporosis with intravenous pamidronate and calcium: a prospective controlled 1-year study comparing a single infusion, an infusion given once every 3months, and calciumalone. J Bone Miner Res 16(1): 104-112.

Brumsen C, Papapoulos SE, Lips P, Petronella H L M Geelhoed- Duijvestijn, Neveen A T Hamdy, et al. (2002) Daily oral pamidronate in women and men with osteoporosis: a 3-year randomized placebo-controlled clinical trial with a 2-year open extension. J Bone Miner Res 17(6): 1057-1064.

Voskaridou E, Terpos E, Spina G, Palermos J, Rahemtulla A, et al. (2003) Pamidronate is an effective treatment for osteoporosis in patients with beta thalassaemia. Br J Haematol 123 (4): 730-737.

Voskaridou E, Anagnostopoulos A, Konstantopoulos K, Stoupa E, Spyropoulou E, et al. (2006) Zoledronic acid for the treatment of osteoporosis in patients with β-thalassemia: results from a single-center, randomized, placebo-controlled trial. Haematologica 91(9): 1193-1202.

Forni GL, Perrotta S, Giusti A, Quarta G, Pitrolo L, et al. (2012) Neridronate improves bone mineral density and reduces back pain in β-thalassaemia patients with osteoporosis: results from a phase 2, randomized, parallel-arm, open-label study. Br J Haematol 158(2): 274-282.

Raje N, Vallet S (2010) Sotatercept, a soluble activin receptor type 2A IgG-Fc fusion protein for the treatment of anemia and bone loss. Cur Opin Mol Ther 12(5): 586-597.

Erlandson ME, Brilliant R, Smith CH (1964) Comparison of sixty−six patients with thalassemia major and thirteen patients with thalassemia intermedia: including evaluations of growth, development, maturation and prognosis. Annals of the New York Academy of Sciences 119: 727- 735.

PDF (Русский)
PDF (Русский)

Keywords

intermediate β-thalassemia
bone changes
osteoporosis промежуточная β-талассемия
изменения в костях
остеопороз aralıq β-talassemiya
sümük dəyişiklikləri
osteoporoz
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.