Моделирование широко используется при определении лучших стратегий смягчения воздействия инфекционных заболеваний. В настоящее время одной из актуальных проблем является моделирование такой сложной системы, как распространение инфекции COVID-19. Целью данной статьи является графическое моделирование распространения инфекции COVID-19. В статье исследуются исследования, связанные с моделированием пандемии COVID-19, анализируются факторы, влияющие на распространение заболевания, и его основные характеристики. Мы предлагаем концептуальную модель эпидемии COVID-19 с учетом социальной дистанции, продолжительности контакта с инфицированным человеком и его демографических характеристик на основе местоположения. На основе гипотетического сценария распространения вируса разрабатывается графическая модель процесса, начиная от первого подтвержденного случая заражения до передачи вируса от человека к человеку, и визуализируется с учетом эпидемиологических характеристик COVID-19. Применение графика для моделирования пандемии позволяет учитывать множество факторов, влияющих на эпидемиологический процесс, и проводить численные эксперименты. Преимущество такого подхода оправдано тем, что он позволяет проводить обратный анализ распространения в результате динамической записи выявленных случаев заражения в модели. Такой подход позволяет выявлять невыявленные случаи заражения на основе социальной дистанции и продолжительности контакта и значительно устранять неопределенность. Обратите внимание, что социальные, экономические, демографические факторы, плотность населения, ментальные ценности и т. Д. Влияют на увеличение числа случаев заражения, и, следовательно, исследование не могло учесть все факторы. В будущих исследованиях будет проанализировано множество факторов, влияющих на количество инфекций, и будет рассмотрено их использование в моделях.
Apple Google partner on COVID 19, Apple & Google partner on COVID-19, Apple and Google partner on COVID-19 contact tracing technology, apple.com/newsroom/2020/04/apple-and-google-partner-on-covid-19-. Google Scholar Chan et al., 2020
J.F.-W. Chan, S. Yuan, K.-H. Kok, K.K.-W. To, H. Chu, J. Yang, et al.A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster Lancet, 395 (2020), pp. 514-523
https://www.thelancet.com/action/showPdf?pii=S0140-6736%2820%2930154-9 ArticleDownload PDFView Record in ScopusGoogle Scholar Chen et al., 2020
T.-M. Chen, J. Rui, Q.-P. Wang, Z.-Y. Zhao, et al.A mathematical model for simulating the phase-based transmissibility of a novel coronavirus Infectious Diseases of Poverty, 9 (2020), 10.1186/s40249-020-00640-3 Google Scholar Connell, 2015
C. ConnellWhat’s the difference between measuring location by UWB, Wi-Fi, and Bluetooth?
www.electronicdesign.com/technologies/communications/article/21800581/whats-the-difference-between-measuring-location-by-uwb-wifi-and-bluetooth (2015) Google Scholar
COVID Community Alert, COVID Community Alert, https://coronavirus-outbreak-control.github.io/web/. Google Scholar Currie et al., 2020
C.S.M. Currie, J.W. Fowler, K. Kotiadis, T. Monks, et al.How simulation modelling can help reduce the impact of COVID-19 Journal of Simulation (2020), 10.1080/17477778.2020.1751570 Google Scholar
ECDC Technical Report, 2020 ECDC Technical ReportContact tracing: Public health management of persons, including healthcare workers, having had contact with COVID-19 cases in the European Union Technical report
https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-public-health-management-contact-novel-coronavirus-cases-EU.pdf (2020) Google Scholar
eRouška, eRouška https://erouska.cz
Flourish, FlourishData visualization & storytelling https://flourish.studio/ Google Scholar Giordano et al., 2020
G. Giordano, F. Blanchini, R. Bruno, P. ColaneriModelling the COVID-19 epidemic and implementation of population-wide interventions in Italy Nature Medicine (2020), 10.1038/s41591-020-0883-7 Google Scholar Gleick, 2020
P.H. GleickNo COVID-19 models are perfect, but some are useful https://time.com/5838335/covid-19-prediction-models/ (2020) Google Scholar
HaMagen https://govextra.gov.il/ministry-of-health/hamagen-app/download-en/ Holmdahl and Buckee, 2020
Holmdahl, C. BuckeeWrong but useful – what Covid-19 epidemiologic models can and Cannot Tell Us https://www.nejm.org/doi/full/10.1056/NEJMp2016822 (2020) Google Scholar
E.C. Holmes, A. Rambaut, K.G. AndersenPandemics: Spend on surveillance, not prediction Nature, 558 (7709) (2018), pp. 180-182, 10.1038/d41586-018-05373-w CrossRefView Record in ScopusGoogle Scholar
Imai et al., 2020
N. Imai, A. Cori, I. Dorigatti, M. Baguelin, et al.Report 3: Transmissibility of 2019-nCoV, reference source
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/ (2020) Google Scholar
B. Ivorra, M.R. Ferrández, M. Vela-Pérez, A.M. RamosMathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) considering its particular characteristics
The case of China (2020), 10.13140/RG.2.2.21543.29604 Preprint Google Scholar
M.D.V. Kerkhove, N.M. FergusonEpidemic and intervention modelling–a scientific rationale for policy decisions? Lessons from the 2009 influenza pandemic
Bulletin of the World Health Organization, 90 (4) (2012), pp. 306-310, 10.2471/BLT.11.097949 Google Scholar M. KetchellLack of data makes predicting COVID-19’s spread difficult but models are still vital (2020)
https://theconversation.com/lack-of-data-makes-predicting-covid-19s-spread-difficult-but-models-are-still-vital-135797 Google Scholar
M.A. Khan, A. AtanganaModeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative Alexandria Engineering Journal (2020), 10.1016/j.aej.2020.02.033 (in press) Google Scholar
S.M. Kissler, C. Tedijanto, E. Goldstein, Y.G. Grad, M. LipsitchProjecting the transmission dynamics of SARS-CoV-2 through the postpandemic period Science, 368 (6493) (2020), pp. 860-868
I.S. Kristiansen, E.A. Burger, B.F. De BlasioCovid-19: Simulation models for epidemics (2020) https://tidsskriftet.no/en/2020/03/kronikk/covid-19-simulation-models-epidemics Google Scholar
A.J. Kucharski, T.W. Russell, Ch. Diamond, et al.Early dynamics of transmission and control of COVID-19: A mathematical modelling study The Lancet Infectious Diseases, 20 (2020), pp. 553-558, 10.1016/S1473-3099(20)30144-4
L. Li, Z. Yang, Z. Dang, et al.Propagation analysis and prediction of the COVID-19 Infectious Disease Modelling, 5 (2020), pp. 282-292
Q. Lin, S. Zhao, D. Gao, Y. Lou, et al.A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action International Journal of Infectious Diseases, 93 (2020), pp. 211-216
J. Michaud, J. Kates, L. LevittCOVID-19 models: Can they tell us what we want to know? (2020) https://www.kff.org/coronavirus-policy-watch/covid-19-models/ Google Scholar
MorrowFrance to test controversial Covid-19 tracking app during lockdown exit (2020) www.rfi.fr/en/science-and-technology Google Scholar
M. PanzarinoApple and Google are launching a joint COVID-19 tracing tool for iOS and Android TechCrunch
https://techcrunch.com/2020/04/10/apple-and-google-are-launching-a-joint-covid-19-tracing-tool/ (2020) Google Scholar
B.M. PavlyshenkoRegression approach for modeling COVID-19 spread and its impact on stock market (Preprint) (2020)
https://arxiv.org/pdf/2004.01489 Google Scholar
QR health code, Q R health code, Expats in China hail QR health code, globaltimes.cn/content/1181828.shtml. Google Scholar
J. RigginsThe challenges to building a predictive COVID-19 model (2020)
https://thenewstack.io/the-challenges-to-building-a-predictive-covid-19-model/ Google Scholar
K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, et al.Real-time forecasts of the COVID-19
epidemic in China from february 5th to february 24th Infectious Disease Modelling, 5 (2020), pp. 256-263, 10.1016/j.idm.2020.02.002
Sahin, A. Erdogan, P.M. Agaoglu, Y. Dineri, A. Cakirci, M. Senel, et al.2019 novel coronavirus (COVID-19) outbreak: A review of the current literature Eurasian J. Med. Oncol., 4 (2020), pp. 1-7
R. SameniMathematical modeling of epidemic diseases; A case study of the COVID-19 coronavirus (2020) https://arxiv.org/pdf/2003.11371 Google Scholar
F.M. Shearer, R. Moss, J. McVernon, J.V. Ross, J.M. McCawInfectious disease pandemic planning and response: Incorporating decision analysis PLoS Medicine, 17 (1) (2020), 10.1371/journal.pmed.1003018 Google Scholar
M. SlamichBluetooth vs ultra-wideband: Which indoor location system? https://blog.pointr.tech/bluetooth-vs-ultra-wideband-which-technology-to-use-for-indoor-location (2020) Google Scholar
Stopp Corona APP https://www.roteskreuz.at/site/meet-the-stopp-corona-app/
TraceTogether www.tracetogether.gov.sg
L. Wang, Y. Wang, Y. Chen, Q. QinUnique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures Journal of Medical Virology (2020), 10.1002/jmv.25748
WHO IHRStatement on the meeting of the international health regulations (2005) emergency committee regarding the outbreak of novel coronavirus (2019-nCoV) (2020)
World Health Organization (WHO)WHO coronavirus disease (COVID-19) dashboard (28 October 2020) https://covid19.who.int Google Scholar
Ch. Yang, J. WangA mathematical model for the novel coronavirus epidemic in Wuhan, China Mathematical Biosciences and Engineering, 17 (3) (2020), pp. 2708-2724
D. Zhao, L. Li, H. Peng, Y. YangMultiple routes transmitted epidemics on multiplex networks Physics Letters A, 378 (10) (2014), pp. 770-776
S. Zhao, S.S. Musa, Q. Lin, J. Ran, G. Yan, et al.Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-Driven modelling analysis of the early outbreak Journal of Clinical Medicine, 9 (2) (2020), p. 388, 10.3390/jcm902038810.3390/jcm9020388
Ch. Zhou, F. Su, T. Pei, A. Zhang, et al.COVID-19: Challenges to GIS with big data Geography and Sustainability, 1 (1) (2020), pp. 77-87