Modelləşdirmə yoluxucu xəstəliklərin təsirinin azaldılması üçün ən yaxşı strategiyaların müəyyənləşdirilməsində geniş istifadə olunur. Hal-hazırda COVID-19 infeksiyasının yayılması kimi kompleks bir sistemin modelləşdirilməsi aktual mövzulardandır. Bu məqalənin məqsədi COVID-19 infeksiyasının yayılmasının qrafik əsaslı modelləşdirməsidir. Məqalədə COVID-19 pandemiyasının modelləşdirilməsi ilə əlaqəli araşdırmalar araşdırılır və xəstəliyin yayılmasına təsir göstərən amillər və əsas xüsusiyyətləri təhlil olunur. Sosial məsafəni, yoluxmuş bir şəxslə təmas müddətini və onların yerləşmə əsaslı demoqrafik xüsusiyyətlərini nəzərə alaraq COVID-19 epidemiyasının konseptual bir modelini təklif edirik. Virusun yayılma fərziyyə ssenarisinə əsasən, təsdiqlənmiş ilk infeksiya hadisəsindən başlayaraq virusun insandan insana ötürülməsinə qədər prosesin qrafiki modeli hazırlanır və COVID-19-un epidemioloji xüsusiyyətləri nəzərə alınaraq görselləşdirilir. Pandemiya modelləşdirməsi üçün qrafiqin tətbiqi epidemioloji prosesi təsir edən çoxsaylı amillərin nəzərdən keçirilməsinə və ədədi təcrübələrin aparılmasına imkan verir. Bu yanaşmanın üstünlüyü, modeldə aşkar edilmiş infeksiya hallarının dinamik qeydinin nəticəsi olaraq yayılma tərs analizini təmin etməsi ilə əsaslandırılır. Bu yanaşma, sosial məsafəyə və əlaqə müddətinə əsasən aşkarlanmayan infeksiya hallarının müəyyənləşdirilməsinə və qeyri-müəyyənliyin əhəmiyyətli dərəcədə aradan qaldırılmasına imkan verir. Qeyd edək ki, sosial, iqtisadi, demoqrafik amillər, əhali sıxlığı, zehni dəyərlər və s. İnfeksiya hallarının artmasına təsir göstərir və bu səbəbdən tədqiqat bütün faktorları nəzərdən keçirə bilmədi. Gələcək tədqiqatlarda infeksiyaların sayına təsir göstərən çoxsaylı amillər təhlil ediləcək və modellərdə istifadəsi nəzərdən keçiriləcəkdir.
Apple Google partner on COVID 19, Apple & Google partner on COVID-19, Apple and Google partner on COVID-19 contact tracing technology, apple.com/newsroom/2020/04/apple-and-google-partner-on-covid-19-. Google Scholar Chan et al., 2020
J.F.-W. Chan, S. Yuan, K.-H. Kok, K.K.-W. To, H. Chu, J. Yang, et al.A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster Lancet, 395 (2020), pp. 514-523
https://www.thelancet.com/action/showPdf?pii=S0140-6736%2820%2930154-9 ArticleDownload PDFView Record in ScopusGoogle Scholar Chen et al., 2020
T.-M. Chen, J. Rui, Q.-P. Wang, Z.-Y. Zhao, et al.A mathematical model for simulating the phase-based transmissibility of a novel coronavirus Infectious Diseases of Poverty, 9 (2020), 10.1186/s40249-020-00640-3 Google Scholar Connell, 2015
C. ConnellWhat’s the difference between measuring location by UWB, Wi-Fi, and Bluetooth?
www.electronicdesign.com/technologies/communications/article/21800581/whats-the-difference-between-measuring-location-by-uwb-wifi-and-bluetooth (2015) Google Scholar
COVID Community Alert, COVID Community Alert, https://coronavirus-outbreak-control.github.io/web/. Google Scholar Currie et al., 2020
C.S.M. Currie, J.W. Fowler, K. Kotiadis, T. Monks, et al.How simulation modelling can help reduce the impact of COVID-19 Journal of Simulation (2020), 10.1080/17477778.2020.1751570 Google Scholar
ECDC Technical Report, 2020 ECDC Technical ReportContact tracing: Public health management of persons, including healthcare workers, having had contact with COVID-19 cases in the European Union Technical report
https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-public-health-management-contact-novel-coronavirus-cases-EU.pdf (2020) Google Scholar
eRouška, eRouška https://erouska.cz
Flourish, FlourishData visualization & storytelling https://flourish.studio/ Google Scholar Giordano et al., 2020
G. Giordano, F. Blanchini, R. Bruno, P. ColaneriModelling the COVID-19 epidemic and implementation of population-wide interventions in Italy Nature Medicine (2020), 10.1038/s41591-020-0883-7 Google Scholar Gleick, 2020
P.H. GleickNo COVID-19 models are perfect, but some are useful https://time.com/5838335/covid-19-prediction-models/ (2020) Google Scholar
HaMagen https://govextra.gov.il/ministry-of-health/hamagen-app/download-en/ Holmdahl and Buckee, 2020
Holmdahl, C. BuckeeWrong but useful – what Covid-19 epidemiologic models can and Cannot Tell Us https://www.nejm.org/doi/full/10.1056/NEJMp2016822 (2020) Google Scholar
E.C. Holmes, A. Rambaut, K.G. AndersenPandemics: Spend on surveillance, not prediction Nature, 558 (7709) (2018), pp. 180-182, 10.1038/d41586-018-05373-w CrossRefView Record in ScopusGoogle Scholar
Imai et al., 2020
N. Imai, A. Cori, I. Dorigatti, M. Baguelin, et al.Report 3: Transmissibility of 2019-nCoV, reference source
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/ (2020) Google Scholar
B. Ivorra, M.R. Ferrández, M. Vela-Pérez, A.M. RamosMathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) considering its particular characteristics
The case of China (2020), 10.13140/RG.2.2.21543.29604 Preprint Google Scholar
M.D.V. Kerkhove, N.M. FergusonEpidemic and intervention modelling–a scientific rationale for policy decisions? Lessons from the 2009 influenza pandemic
Bulletin of the World Health Organization, 90 (4) (2012), pp. 306-310, 10.2471/BLT.11.097949 Google Scholar M. KetchellLack of data makes predicting COVID-19’s spread difficult but models are still vital (2020)
https://theconversation.com/lack-of-data-makes-predicting-covid-19s-spread-difficult-but-models-are-still-vital-135797 Google Scholar
M.A. Khan, A. AtanganaModeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative Alexandria Engineering Journal (2020), 10.1016/j.aej.2020.02.033 (in press) Google Scholar
S.M. Kissler, C. Tedijanto, E. Goldstein, Y.G. Grad, M. LipsitchProjecting the transmission dynamics of SARS-CoV-2 through the postpandemic period Science, 368 (6493) (2020), pp. 860-868
I.S. Kristiansen, E.A. Burger, B.F. De BlasioCovid-19: Simulation models for epidemics (2020) https://tidsskriftet.no/en/2020/03/kronikk/covid-19-simulation-models-epidemics Google Scholar
A.J. Kucharski, T.W. Russell, Ch. Diamond, et al.Early dynamics of transmission and control of COVID-19: A mathematical modelling study The Lancet Infectious Diseases, 20 (2020), pp. 553-558, 10.1016/S1473-3099(20)30144-4
L. Li, Z. Yang, Z. Dang, et al.Propagation analysis and prediction of the COVID-19 Infectious Disease Modelling, 5 (2020), pp. 282-292
Q. Lin, S. Zhao, D. Gao, Y. Lou, et al.A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action International Journal of Infectious Diseases, 93 (2020), pp. 211-216
J. Michaud, J. Kates, L. LevittCOVID-19 models: Can they tell us what we want to know? (2020) https://www.kff.org/coronavirus-policy-watch/covid-19-models/ Google Scholar
MorrowFrance to test controversial Covid-19 tracking app during lockdown exit (2020) www.rfi.fr/en/science-and-technology Google Scholar
M. PanzarinoApple and Google are launching a joint COVID-19 tracing tool for iOS and Android TechCrunch
https://techcrunch.com/2020/04/10/apple-and-google-are-launching-a-joint-covid-19-tracing-tool/ (2020) Google Scholar
B.M. PavlyshenkoRegression approach for modeling COVID-19 spread and its impact on stock market (Preprint) (2020)
https://arxiv.org/pdf/2004.01489 Google Scholar
QR health code, Q R health code, Expats in China hail QR health code, globaltimes.cn/content/1181828.shtml. Google Scholar
J. RigginsThe challenges to building a predictive COVID-19 model (2020)
https://thenewstack.io/the-challenges-to-building-a-predictive-covid-19-model/ Google Scholar
K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, et al.Real-time forecasts of the COVID-19
epidemic in China from february 5th to february 24th Infectious Disease Modelling, 5 (2020), pp. 256-263, 10.1016/j.idm.2020.02.002
Sahin, A. Erdogan, P.M. Agaoglu, Y. Dineri, A. Cakirci, M. Senel, et al.2019 novel coronavirus (COVID-19) outbreak: A review of the current literature Eurasian J. Med. Oncol., 4 (2020), pp. 1-7
R. SameniMathematical modeling of epidemic diseases; A case study of the COVID-19 coronavirus (2020) https://arxiv.org/pdf/2003.11371 Google Scholar
F.M. Shearer, R. Moss, J. McVernon, J.V. Ross, J.M. McCawInfectious disease pandemic planning and response: Incorporating decision analysis PLoS Medicine, 17 (1) (2020), 10.1371/journal.pmed.1003018 Google Scholar
M. SlamichBluetooth vs ultra-wideband: Which indoor location system? https://blog.pointr.tech/bluetooth-vs-ultra-wideband-which-technology-to-use-for-indoor-location (2020) Google Scholar
Stopp Corona APP https://www.roteskreuz.at/site/meet-the-stopp-corona-app/
TraceTogether www.tracetogether.gov.sg
L. Wang, Y. Wang, Y. Chen, Q. QinUnique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures Journal of Medical Virology (2020), 10.1002/jmv.25748
WHO IHRStatement on the meeting of the international health regulations (2005) emergency committee regarding the outbreak of novel coronavirus (2019-nCoV) (2020)
World Health Organization (WHO)WHO coronavirus disease (COVID-19) dashboard (28 October 2020) https://covid19.who.int Google Scholar
Ch. Yang, J. WangA mathematical model for the novel coronavirus epidemic in Wuhan, China Mathematical Biosciences and Engineering, 17 (3) (2020), pp. 2708-2724
D. Zhao, L. Li, H. Peng, Y. YangMultiple routes transmitted epidemics on multiplex networks Physics Letters A, 378 (10) (2014), pp. 770-776
S. Zhao, S.S. Musa, Q. Lin, J. Ran, G. Yan, et al.Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-Driven modelling analysis of the early outbreak Journal of Clinical Medicine, 9 (2) (2020), p. 388, 10.3390/jcm902038810.3390/jcm9020388
Ch. Zhou, F. Su, T. Pei, A. Zhang, et al.COVID-19: Challenges to GIS with big data Geography and Sustainability, 1 (1) (2020), pp. 77-87